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Detailed mean flow and turbulence measurements have been made in a low-speed 
turbulent boundary layer in zero pressure gradient with an isolated, artificially 
generated vortex pair imbedded in it. The vortices, generated by two half-delta 
wings on the floor of the wind-tunnel settling chamber, rotate in opposite directions 
such that the ‘ common flow ’ between the vortices is away from the surface, and the 
vortex pair draws boundary-layer fluid upwards. The distance of the vortex cores 
above the surface grows downstream, and is roughly twice the local boundary-layer 
thickness. The cancellation of circulation by mixing of fluid from the two vortices is 
slow, and the vortices are identifiable down the full length of the test section. As in 
the case of the single vortex investigated in Part  1 of this series, large changes in 
structural parameters of the turbulence occur. 

1. Introduction 
This paper is the second of a group dealing with longitudinal vortices imbedded in 

otherwise two-dimensional constant-pressure turbulent boundary layers. Part 1, by 
Shabaka, Mehta & Bradshaw (1985) dealt with a single vortex and Part 3, by A. D. 
Cutler & P. Bradshaw (in preparation), discusses a vortex pair with the ‘common 
flow ’ between the vortices directed towards the surface, so that the vortices move 
apart laterally with a diverging boundary-layer flow between them. For an overview 
of these and related experiments see Bradshaw & Cutler (1987). Here we present 
measurements of the interaction between a boundary layer and a vortex pair with 
the ‘common flow’ upwards. Although the vortices are initially close to the solid 
surface, their cores rise to a height of roughly twice the thickness of the boundary 
layer, to which they are connected by a tongue of upward-moving fluid, with a 
corresponding lateral convergence of boundary-layer fluid towards the plane of 
symmetry. The conventional inviscid model of aircraft trailing vortices near the 
ground, composed of the two real vortices and their images under ground, a t  once 
shows that vortices with the common flow towards the surface stay close to the 
surface and move apart in the spanwise direction ; but if in this inviscid model the 
vertical plane of symmetry, rather than the horizontal one, represents a solid surface, 
then the right-hand half (say) of the flow represents the present case of two vortices 
with common flow away from the surface, drawing closer together as they move 
away from the surface. 
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In Part 1 we outlined the importance of imbedded-vortex flows in general, and 
reviewed the rather small number of papers that throw direct light on the turbulence 
structure. Probably the most spectacular real-life case of a vortex pair with the 
common flow away from the surface is in the ‘S-bend’ intake used in the dorsal 
engines of several current civil jet aircraft and the side intakes of many military 
aircraft (Bansod & Bradshaw 1972; Taylor, Whitelaw & Yianneskis 1984). In this 
case, longitudinal vorticity is generated by lateral (circumferential) deflection of 
boundary-layer fluid by the pressure gradients in the first half of the ‘S’, leading to 
a vortex pair near the bottom surface of a dorsal intake: the vortex pair is then 
intensified by longitudinal acceleration and concave surface curvature in the second 
half of the bend, leading in turn to large circumferential non-uniformity of the flow 
at the engine face. A weaker vortex pair occurs on the convex surface of a single bend 
(Humphrey, Whitelaw & Yee 1981) where surface-curvature effects are stabilizing. 
A vortex pair with common flow upwards also appears, in principle, at  the centreline 
of a wind-tunnel contraction wall, again because of lateral deflection of boundary- 
layer fluid (Mokhtari & Bradshaw 1983 ; Gessner, Ferguson & Lo 1986) : fortunately, 
if the contraction ratio is large the boundary layer at  exit is so thin that the vortex 
pair attenuates quickly. 

In the present paper, we have retained the technique used in Part 1, in which 
vortices are generated by half-delta wings on the floor of the wind-tunnel settling 
chamber (followed by a ‘two-dimensional ’ contraction with a reduction in height 
but not in width). The advantage of this configuration is that the circulation around 
a vortex is nominally conserved as it passes through a contraction, while percentage 
variations in axial velocity are greatly reduced, so that the vortex entering the 
working section is relatively pure and as close to the surface as possible. As in Part 
1, the test-section boundary layer is at  constant pressure and is nominally two- 
dimensional outside the vortex interaction region, so that changes in turbulence 
structure can be attributed directly to the vortex interaction rather than to 
complicating influences such as longitudinal pressure gradient. For a study of a 
configuration similar to that of Part 1,  but including the effects of pressure gradient, 
see Westphal, Eaton & Pauley (1987); and for mean-flow measurements in a similar 
configuration to the present one see Pauley & Eaton (1987). Heat-transfer effects 
have been investigated by Eibeck & Eaton (1987). 

Measurements were made with conventional hot-wire anemometers, the effect of 
inserting probes into these relatively weak vortices being negligible. The mea- 
surements include all three components of mean velocity, all six independent 
components of Reynolds stress, and all triple products, in each case at  two or more 
streamwise stations. Here we present only a selection of results, mainly at 1350 mm 
from the start of the working section : full results are obtainable on digital magnetic 
tape from the authors. The object of the work was to contribute to the development 
and testing of engineering calculation methods for complex turbulent flows, with the 
expectation that only methods based directly on term-by-term modelling of the 
Reynolds-stress transport equations would have sufficient generality to be reliable in 
a range of vortex flows. This expectation seems to have been confirmed by the 
comparisons of Liandrat, Aupoix & Cousteix (1985) between a number of calculation 
methods, and the data of Part 1 and the present paper. The measurements allow 
evaluation of all the terms in the Reynolds-stress transport equations, with the 
exception of those involving the pressure fluctuations : spatial transport of Reynolds 
stress by pressure fluctuations appears to be fairly small compared with transport by 
triple products of velocity fluctuations, while ‘ scrambling ’ of the turbulence by the 
pressure-strain redistribution term provides the main sink in the shear-stress 
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transport equations and can be deduced fairly accurately by difference. We have not 
measured turbulent energy dissipation directly : the total dissipation can be deduced 
as the sum of all the other (measured) terms in the turbulent energy equation, and, 
since the Reynolds number is fairly high, an equal partition of dissipation can be 
assumed except near the solid surface. 

As in Parts 1 and 3, the results demonstrate large changes in the dimensionless 
structure parameters of the turbulence (corresponding to the ‘constants ’ in 
Reynolds-averaged turbulence models). The correlation coefficients for the different 
components of shear stress necessarily reverse sign within the interaction region, but 
take quite large numerical values of either sign : that is, the turbulence is strangely, 
but strongly, organized. Near the centreplane a ‘tongue ’ of highly turbulent fluid is 
extruded away from the surface, so that contributions to the normal stresses and to 
the primary (-m) shear stress are large, but the shear correlation coefficient in the 
centreplane is only about -0.25 near the surface, compared with typical values of 
- 0.5 in a two-dimensional boundary layer, and steadily decreases outwards. This 
seems to be an extreme example of the weakening of eddy organization by lateral 
convergence (see Pate1 & Baek 1987 for measurements on the lee side of a body of 
revolution a t  incidence). Triple-product behaviour is necessarily very complicated, 
and, for simplicity rather than to promote any particular turbulence model, we 
present the results as ‘transport velocities’. A transport velocity is the ratio of a 
triple product to the Reynolds stress that it notionally transports: in the double- 
vortex flow, values of as much as 0.2 of the external-stream velocity are found, even 
in regions where the Reynolds stresses (the denominators of the definitions) are quite 
large - another example of strong organization. Turbulence modelling problems will 
not be discussed in detail, but we attempt to interpret the results in the context of 
term-by-term modelling of the Reynolds-stress transport equations. 

2. Apparatus and techniques 
The test rig and techniques were generally as in Part 1. The measurements were 

made in the floor boundary layer of a 762 x 127 mm (30 x 5 in.) open-circuit blower 
wind tunnel, at a speed of about 30 m s-l. The boundary layer a t  entry to the 
working section was laminar and about 3 mm thick, and was tripped by a 1 mm 
diameter wire. The pair of half-delta-wing vortex generators had the same dimensions 
as the single generator used in Part 1 (semi-span 114 mm, leading-edge sweep 68”). 
The vortex generators were mounted close together on the floor of the wind-tunnel 
settling chamber, with the leading edges further apart than the trailing edges (angles 
of ‘incidence’ f 12”) to produce a trailing vortex pair with common flow upwards. 
The configuration was developed in the Department’s 1.2 x 0.6 m (4 x 2 ft.) smoke 
tunnel, at approximately the same Reynolds number as the main tests. The 
circulation round each vortex a t  entry to the working section was about 2.23Ue mm : 
this is about 20% larger than for the single vortex in Part 1, probably because one 
half-delta acts as an image of the other, increasing the lift (strictly, side force) in the 
same way as ‘ground effect ’. As in Part 1,  Pitot tubes and surface Pitot (Preston) 
tubes were used for auxiliary measurements, and, again as in Part 1,  secondary-flow 
velocity and turbulence measurements were made with conventional constant- 
temperature cross-wire anemometry. Drift in calibration due to air-temperature 
variation was accounted for in the software. In the ( y ,  2)-plane contour plots shown 
below, the vertical scale is exaggerated, by a factor of $ compared with the horizontal 
scale. 
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FIQURE 1. Secondary-velocity-vector plots (a )  z = 900 mm: ( b )  1350 mm. 

3. Results 
Although the flow in the region of the vortex cores themselves is acceptably 

symmetrical, the measurements show a crossflow angle of as much as 2 O  in the 
boundary layer beneath the vortices, superimposed on a symmetrical crossflow 
pattern induced by the vortices. Figure 1 shows quantitative results for the 
‘streamlines’ in the secondary-flow (y, z)-plane, and figure 2 is a much-exaggerated 
qualitative sketch. The measurements were made in the same way as those of Part 
1 and our other three-dimensional experiments, which showed no unexpected 
measured crossflow mean velocity W : also, the symmetry of the measurements in the 
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FIGURE 2 .  Schematic of 'streamlines ' in crossflow (y, 2)-plane : S = Saddle point : S-S is nominal 
line of symmetry. 

vortex region suggests that there are no consistent errors W in that part of the flow. 
Near the wall, the mean-velocity gradient aU/ay induces a spurious W in the reading 
of a cross-wire probe, but the spurious crossflow angle is roughly 0.05h/y, where h is 
the distance between the two wires (typically 0.5 mm), and is thus no more than 
0.005 rad (f") a t  y = 5 mm. Therefore the asymmetrical W-pattern is likely to  be real, 
rather than a consistent error: it appears in measurements a t  all x-positions and is 
certainly not a random error. 

The measurements of Pauley & Eaton (1987), on a vortex pair with one vortex 
twice the strength of the other, showed very large asymmetry of crossflow even 
before the vortex core positions had become noticeably asymmetrical. This suggests 
that the crossflow in the present boundary layer may result from a rather small 
difference between the strengths of the two vortices. 

The circulation implied by integrating aW/ay over the region of the boundary 
layer shown in figure 1 is of the same order as the circulation in each vortex : however, 
this is almost completely cancelled by the opposite sign of aW/ay closest to the 
surface, the difference being proportional to the (small) value of W a t  the boundary- 
layer edge. Also, of course, the boundary-layer circulation in the crossflow plane - 
insofar as i t  is real - must be a transfer from the z-wise vorticity in the boundary 
layer, aU/ay, by lateral skewing, rather than a loss from one of the vortices. Results 
presented below show that the plane of symmetry of the vortex pair is slightly 
displaced to one side of the tunnel centreplane, but the implied crossflow angle is only 
about 0.2", of the same order as tunnel flow non-uniformities, and this near- 
symmetry suggests that the boundary-layer crossflow, however caused, does not 
greatly affect the flow in the vortex region. 

Secondary flow velocities (figure 1) are as large as 0 , l  of the axial velocity, and - 
correspondingly - the height of the interaction region is of the order of 0.05-0.1 of 
the streamwise distance x, several times the undisturbed boundary-layer thickness. 
The secondary velocities for the vortex pair are more than twice those obtained a t  a 
similar downstream distance for the single vortex in Part 1. Figure 3 shows the 
longitudinal vorticity contours obtained from differentiating the hot-wire measure- 
ments of figure 1 : some of the smaller-scale variations, such as the asymmetrical cap of 
negative vorticity above the right-hand vortex, are probably finite-difference errors. 
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FIGURE 3. Contours of longitudinal vorticity ( / U ,  = (aW/ay-aV/az)/U, mm-', x = 1350 mm. 
0, -0.0045; 0, -0.0030; A, -0.0015; +, 0;  X ,  0.0015; 0,  0.0030; V, 0.0045. 

The maximum level of vorticity measured in the cores was about O.018Ue mrn-l. 
The filled circles in figure 3 and later figures mark the positions of the vortex cores 
(maximum vorticity regions) as an aid to viewing. In  the boundary layer the overall 
asymmetry noticeable in figure 1 naturally leads to asymmetry of the vorticity. 

Figure 4 shows contours of the streamwise velocity, measured with a 1 mm 
diameter Pitot tube, a t  three stations. Static pressure variations were neglected in 
evaluating U ,  variations estimated from the secondary flow pattern being no more 
than 1 % of the dynamic pressure. The velocity defect a t  the vortex-core position is 
no more than O.OlU, a t  x = 600 mm. Flow-visualization tests confirmed that the 
main part of the vortex-generator wake was rolled up into the vortices, so the 
streamwise defect carried by the vortices is negligible. Naturally, the boundary-layer 
velocity contours are 'convected' by the secondary flow pattern into an outgoing 
wedge near the plane of symmetry, but the outermost contours a t  the first two 
stations are concave upwards, presumably as a result of the rather large displacement 
effect caused by the rapid growth of the vortex interaction region a t  small x, leading 
to high pressures on the plane of symmetry. Plots on semi-logarithmic axes (not 
shown here) are even more grossly distorted in the outer layer than in the case of the 
single vortex. As in Part 1,  the friction velocity deduced from the reading of the 
1 mm Pitot tube, placed on the wall and used as a Preston tube, collapses the near- 
wall profiles on the universal logarithmic law, both in slope and in intercept. 

The low velocity near the surfaces a t  the centreplane, due to lateral convergence 
of boundary-layer fluid, naturally leads to low skin friction, as seen in figure 5. The 
sharpness of the variation suggests that lateral wandering of the vortex pair must be 
small. Wandering is also discussed by Westphal & Mehta (1987), who deliberately 
oscillated the vortex generator but found that its effects died out quite rapidly, in 
tacit agreement with the present results. The local maximum in skin friction near the 
centreline a t  x = 600 mm is not just a reading error, because it corresponds to the 
local minimum in distance of the axial velocity contours from the surface shown in 
figure 4 ( a )  : it is presumably part of the initial adjustment of the interaction near the 
point at which the vortices enter the boundary layer. However it may be 
' configuration dependent ', because Pauley & Eaton (1987) found no similar effect 
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FIGURE 5. Spanwise variation of skin-friction coefficient cf = r,/ipU,Z : 0, z = 600 mm ; 0, 
900 m m ;  X ,  1350 mm. 

although it is present in the measurements of Eibeck & Eaton (1987). The peaks in 
skin friction a t  either side of the centreline are not trivial to  explain. As seen in figure 
4, negative V tends to thin the boundary layer, and outweighs the thickening due to 
lateral convergence, but i t  is certainly not obvious that net maxima of cf, too large 
to attribute to Reynolds-number effects alone, should occur. In  Part 3, we show that 
minima of skin friction occur outboard of a vortex pair with ‘common flow’ 
downwards, with maxima inboard of the vortices but again with a mild minimum on 
the centreline. 

Figures 6 and 7 show contours of all six independent Reynolds stresses, a t  
x = 1350 mm only: results for x = 900 mm (all results are available in machine- 
readable form from the authors) are very similar. The longitudinal-component, 
turbulence in figure 6 (a )  is qualitatively what would be expected from convection of 
pre-existing boundary-layer turbulence by the vortices. The wavy contours near the 
vortex cores result from the near-constant turbulence intensity in these regions and 
should not be taken too seriously. Figures 6 ( b )  and 6 (c) show spectacular (and closely 
symmetrical) maxima of vertical and lateral-component turbulence intensity in the 
vortex-core regions. This is further evidence that there is no large-scale lateral 
wandering of the vortices, which would almost certainly lead to large u-component 
fluctuations in regions of large aU/az,  and would also smear out the peaks in v- and 
w-component intensity. The differences in figures 6(b) and 6(c) are interesting in 
themselves, particularly near the centreplane, where 2 has a rather pronounced 
maximum near y = 40 mm while 2 does not. 

Figure 7 shows the Reynolds shear stresses : the somewhat asymmetrical contours 
of rn in figure 7 (a) may be partly attributable to inadequate spanwise resolution. We 
note the significant regions of positive zv (negative shear stress) above and outboard 
of the vortex cores, and the ‘ cap ’ of negative m above the vortex pair. As in Part 1 ,  
we use separate dotted lines for ‘ 0 - ’  and ‘ O + ’  contours, intended to  enclose 
negative and positive regions respectively : the concept of ‘enclosure ’ is not rigorous. 
The contours in figures 7 ( b )  and 7 ( c )  are expected to be ant’isymmetrical about the 
centreplane z = 0 : this is generally the case in the vortex region. The departure from 
antisymmetry nearer the surface is in the sense expected from the flow of boundary- 
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FIGURE 9. Transport velocities of turbulent kinetic energy, 5 = 1350 mm. (a)  Vq/U,  = p"v/(qzUe): 
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layer fluid from left to right seen in the secondary-velocity plots (figure 2). The 
qualitative explanation for the behaviour of the three Reynolds shear stresses is that 
each tends to transport momentum from high-velocity to low-velocity regions, and 
that the vortices tend to rotate fluid about the x-axis. For example, near the right- 
hand, clockwise-rotating, vortex, initially negative m rotates to give negative um; 
and initially negative UW, generated in the region of positive i3U/az in the upswept 
fluid, can be convected and rotated round the vortex to give positive rn above and 
to the right of the vortex. Recall from figure 3 that the longitudinal mean vorticity 
exceeds O.003Ue mm-l over a large part of the vortex core at x = 1350 mm, implying 
that the rate of rotation is locally about one-quarter revolution per metre of 
streamwise travel, with much higher values further upstream : thus, rotation through 
angles of the order of 90" certainly occurs. Passive rotation of the stress tensor 
appears explicitly in the Reynolds-stress transport equations - for instance, the 

transport equation contains a term - m a W / a y  - but may be expected to 
influence the other terms as well, and thus affect the constants in a turbulence 
model. 
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Figure 8 shows a small selection of y-profiles for the correlation coefficients of the 
three components of shear stress, R,,, R,, and R,,: they are intended merely to 
show the (large) typical values away from the zero crossings. R,, is about -0.40 to 
-0.45 in the boundary layer a t  large z ,  but near the centreplane (e.g. z = 5 mm) the 
values are smaller even within the boundary layer, and R,, takes positive values 
(transport of high-momentum fluid away from the surface) immediately underneath 
the vortex cores. We see that dimensionless turbulence parameters, as well as the 
Reynolds stresses, are grossly disturbed, even more than in the single-vortex flow. 
However, the large numerical values of all three coefficients imply that the vortices 
modify, but certainly do not destroy, the anisotropy of the turbulence. 

Figure 9 shows the v- and w-component transport velocities of turbulent energy, 
defined as - ~ -  

u2w + v2w i- w3 

u 2 + 2 + 2 ’  u2+2+w2 . 
&+?+w221 v =  - w, = 

Strictly both definitions should include pressure-fluctuation terms, but these are not 
currently measurable : the pressure contribution to V, is small near the outer edge of 
a plane boundary layer - about the only place where it can be checked by difference 

~ but this is very slender evidence for smallness of pressure contributions to V, and 
W, throughout the present flow. V, should obviously be symmetrical, and W, 
antisymmetrical, about the centreplane: the positions, if not the values, of the 
extrema are indeed symmetrical. As usual, the general tendeney is for turbulent 
energy to be transported from high-energy regions (specifically, the vortex cores) to 
the lower-intensity regions around them. In addition, there is a region of large 
upward transport velocity a t  the top of the interaction region, which might be 
expected, but there is also a significant region of downward transport in between the 
vortex cores, in a region where w”, a t  least, is decreasing fairly strongly with 
increasing y - that is, this is a region of counter-gradient transport. W,, shown in 
figure 9(b), has pronounced extrema close to the vortex-core positions: these are 
regions of maximum turbulent energy, so that gradient-diffusion concepts would 
imply negligible triple-product transport in those regions. 

Figure 10 shows one of the transport velocities for Reynolds shear stress, the 
V-component transport velocity of ED defined as 

Maximum values are very much larger than for the transport velocities of turbulent 
energy, and it is difficult to believe that the same physical processes are responsible 
for both. I n  particular, V,, in the vortex-core region is as large as 0.2 times the free- 
stream velocity. V,, is generally positive (both numerator and denominator being 
negative) but negative values occur in the top ‘cap ’, where ~JB is positive, and in and 
below the cores where is also found close to the surface, 
but the corresponding transport velocities are too small to show up in the contour 

Figure 1 1  shows sample profiles of eddy diffusivities of momentum (‘eddy 
viscosity’, for only) and of Reynolds stresses (for 3 only), normalized in the 
conventional fashion with the external-stream velocity and the undisturbed 
displacement thickness. Note that the normalized eddy viscosity in the outer layer 
of a plane boundary layer is about 0.017. Full contour plots have not been derived : 
it  is clear that the eddy viscosities are highly eccentric and unlikely to be represented 
by simple algebraic formulae or even by transport equations. 

is positive. Positive 

plots. 
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FIGURE 10. V-component transport velocity of turbulent shear stress, V,,/U, = uv2/(mU,) 
z = 1350 mm. 0,  0.20; 0, 0.10; A, 0.05; +, 0.025; X ,  0.0; 0,  -0.025; V, -0.05; H, -0.10 

FIGURE 11. Profiles of eddy diffusivities, x = 1350 mm, normalized by U,S*, where S* is the 
undisturbed displacement thickness. (a) -EU/(&~/&J)  : 0, z = 105 mm; --0--, 15; -A-, -3.75; 
+-.-+, -30; x ,  -100. (b) S/(i3m/ay), symbols as in (a) .  
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FIGURE 12. Mean temperature profiles, with upstream heat addition to negative-z vortex. -0-, 
z = -30 mm; --A--, -20; -+-, - 10. 

Figure 12 shows temperature profiles, resulting from heating one vortex as it left 
the vortex generator, as described in Part 1. The profile at  z = -30 mm passes 
through the vortex core and gives an indication of the maximum temperature: the 
other two profiles, between the vortex core and the centreplane, show very much 
smaller temperature changes, demonstrating that scalar diffusion from one vortex 
into the other is small. This reinforces the picture of small diffusion of momentum 
and vorticity given by, for example, figure 3. 

4. Discussion 
The Reynolds-stress transport equations, and turbulence models based on them, 

contain minor explicit terms representing distortion and rotation by the mean flow. 
In the present case, as in Part 1 and in other complex-flow experiments, these terms 
represent experimental results only qualitatively, at best. The implication is that the 
major (generation or destruction) terms in the transport equations are quantitatively 
affected by distortion : their exact mathematical forms are still valid, but empirical 
models must be modified. As a general principle, ‘constants ’ (empirical coefficients) 
in turbulence models are, or as of right ought to be, closely related to dimensionless 
structure parameters, and the latter will change if the structure is strongly 
perturbed. That is, even at local-equilibrium level, the simplest acceptable model 
must be of the form 

‘empirical coefficient ’ = f (structure parameter) 
= F (dimensionless distortion rate) 
= F ([distortion rate]/(aU/ay]). 

In  the vortex regions in the present flow, the structural modifications - e.g. changes 
in shear correlation coefficients - are evidently rather large. 

The boundary layer underneath the vortices suffers strong lateral convergence (i .e. 
negative awl&), but, as in the single vortex flow, apparently universal logarithmic 
regions can always be distinguished in the mean-velocity profiles close to the surface, 
where the ratio of mean shear aU/ay to lateral convergence -awl& is necessarily 
large. The relatively small circulation of the vortices in the present experiments leads 
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to crossflow angles of no more than about 5", less than occur in many swept-wing 
boundary layers, and therefore we do not expect gross perturbations to the boundary 
layer as such. However, lateral convergence significantly reduces the Reynolds-stress 
correlation coefficient in the centreplane. A low surface shear stress near the 
centreplane is expected, because of the accumulation of low-velocity fluid, but it is 
not obvious that maxima of skin-friction coefficient should necessarily occur 
outboard of the vortices. 

At a higher level of discussion, transport-equation modelling requires empirical 
correlations for the triple-product transport terms, and our results show quite 
complicated behaviour even of the ' bulk-transport ' velocity, in which a given triple 
product is divided by the Reynolds stress that it transports. In  particular, transport 
velocities for different Reynolds stresses are different by up to an order of magnitude, 
seriously undermining the concept of ' bulk transport ' a t  some representative large- 
eddy eruption velocity. The alternative model for turbulent transport, eddy 
diffusivity, is taken over from the kinetic theory of gases with small mean free paths, 
and must be expected to fail in such a highly inhomogeneous flow. As in Part 1 ,  the 
eddy diffusivities of Reynolds stress, to say nothing of the eddy viscosities, behave 
in a way that would be virtually impossible to correlate empirically. 

Unfortunately, there do not seem to be useful quantitative correspondences 
between the present type of vortex pair and the spanwise-infinite array of 
Taylor-Gortler vortices found on concave surfaces (e.g. Hoffman, Muck & Bradshaw 
1985). Crudely speaking, a given concave-surface vortex is a member of one pair with 
the common flow upwards, as in the present paper, and of another pair with the 
common flow downwards, as in Part 3 of the present series. It may be doubted 
whether any description of turbulence less complicated than the full Navier-Stokes 
equations can be expected to deal both with skew-induced vortices of the present sort 
and with curvature-induced vortices, so that empirical constants in Reynolds- 
averaged turbulence models would have to be chosen separately for each case. So far, 
there seem to have been no large-eddy or direct simulations of skew-induced vortices, 
and the direct simulation of curved-channel flow by Moser & Moin (1987) relies on 
spanwise periodicity to simplify the boundary conditions. However, large-eddy 
simulations include calculations of pressure fluctuations, which are currently 
unmeasurable, and a combination of experiment and simulation is probably essential 
for the development of reliable Reynolds-averaged turbulence models for imbedded 
vortex flows. 

One of the few attempts to predict imbedded-vortex flows with present-day 
turbulence models is that  of Liandrat et al. (1985), who used mixing-length, k-e and 
stress-transport models on the data of Part 1 and the present paper. For the single 
vortex of Part 1 ,  the predictions of the spanwise-plane shear stress -am are scarcely 
recognizable, even in the case of the Reynolds-stress model. In  the case of the double 
vortex investigated in the present work, the predicted vortex regions are much too 
tall and slender : the measured ratio of vortex-region height to width, a t  the contour 
U I U ,  = 0.995, is about 1.57 whereas both the mixing-length and k+ models predict 
ratios over 2. That is, a competent application of existing models to the present 
results produces results that  are not adequate for engineers. 

5. Conclusions 
Detailed measurements of the interaction between a vortex pair (with the 

' common flow ' away from the surface) and a two-dimensional boundary layer show 
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a more complex picture than in the case of a single imbedded vortex. Boundary-layer 
fluid is lifted up by the vortices, and entrained into them, but there is very little 
direct interaction between the vortices. Strong, concentrated maxima of lateral- and 
vertical-component intensity occur in the vortex cores, but there is no sign of large- 
scale wandering of the vortices - which, like most kinds of low-frequency 
unsteadiness, would greatly complicate turbulence modelling. There are significant 
effects of lateral convergence in the boundary layer before it is swept up into the 
vortices : for example, the shear-stress correlation coefficient is considerably smaller 
near the plane of symmetry than in the undisturbed boundary layer. In the vortex 
region, large changes occur in all the dimensionless structural parameters of the 
turbulence. As in the case of the single imbedded vortex, eddy viscosities and 
diffusivities are very ill behaved, to the extent that contours are not plottable. In the 
single-vortex flow, apparent ' bulk transport ' velocities of the Reynolds stresses were 
better behaved than eddy diffusivities, but in the present flow these too are ill 
behaved, as well as too large to be plausible velocities of fluid in the eddies. This 
suggests that the whole concept of large eddies that control transport may be 
inapplicable in highly complex flows. Prediction of imbedded-vortex flows will 
require a full Reynolds-stress-transport model flow (i.e. term-by-term modelling of 
the transport equation), but comparisons by Liandrat et al. (1985) between the 
present data sets and several prediction methods suggests that even the best current 
Reynolds-averaged models are inadequate. Complex flows like the present one are 
beyond the reach of current time-dependent Navier-Stokes simulation programs 
(Rogallo & Moin 1984) so that, in the study of complex turbulent flows, computers 
will not replace wind tunnels in the near future. 
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